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Introduction
What is image denoising?

y = x + n
observation true image noise

Goal:
Given a noisy observed image, find the noise-free true image.

Image denoising is a decomposition problem.



Introduction
Why is image denoising important?

Image denoising is of growing importance, because of:

1. A flood of data
Every day approximately 3× 108 images are uploaded to Facebook
alone. This number is growing.

2. The omnipresence of noise
Images are invariably corrupted by noise. Some sources of noise:

I read-out noise (Gaussian)
I dark-current noise (Gaussian)
I photon shot noise (Poisson)
I ... many more.

3. Fixed acquisition processes
Modifying the image acquisition process so as to reduce noise is
often not possible.



Introduction
An Example

unknown true image noisy observation denoising result

x y → x̂
σ = 50

PSNR = 15.09dB PSNR = 22.64dB

An increase in PSNR indicates better results.



Introduction
Two denoising paradigms

We divide denoising approaches into two paradigms:

1. Make sophisticated assumptions about image statistics
Assume “AWG” noise: Additive, white Gaussian noise, with
uniform variance. A lot of research uses this paradigm.

2. Make sophisticated assumptions about noise statistics
Make few assumptions about image statistics.
Less common.



Introduction
Two denoising paradigms

First paradigm
Approaches placing emphasis on understanding images can be
further divided into:

1. Approaches using “internal” image priors: The model adapts
to the noisy image at hand (K-SVD, BM3D). Until
recently 1, the best denoising methods were part of this
category.

2. Approaches using “external” generic image priors (FoE, EPLL)

Second paradigm
Understanding the properties of camera sensor noise by studying
dark-frames.

1Image denoising: Can plain neural networks compete with BM3D?
H.C. Burger, C.J. Schuler, and S. Harmeling. CVPR 2012.



Introduction
Method taxonomy

First paradigm: 
Focus on images

Second paradigm: 
Focus on noise

Internal knowledge
(BM3D, KSVD)

External knowledge
(FoE, EPLL)

Denoising methods



Introduction: Talk Overview

1. Improving existing approaches
using a meta-procedure

2. Denoising astronomical images
using noise statistics (focus on
noise)

3. State-of-the-art image denois-
ing with machine learning (focus
on images, with “external” prior)

input neuron 1

input neuron 2

input neuron 3

sum tanh

first hidden layer

input layer

output layer

sum
weights weights
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Part 1: Multi-scale denoising

Focus on images
This section summarizes the following publication:

Title: Improving denoising algorithms via
a multi-scale meta-procedure

Authors: H.C. Burger, and S. Harmeling
Venue: Proceedings of the 33rd international

conference on Pattern recognition (DAGM). 2011.
Prize: This paper was awarded with the

DAGM 2011 Prize.



Part 1: Multi-scale denoising

First paradigm: 
Focus on images

Second paradigm: 
Focus on noise

Internal knowledge
(BM3D, KSVD)

External knowledge
(FoE, EPLL)

Denoising methods



Part 1: Multi-scale denoising: Motivation

noisy denoised with KSVD
PSNR: 14.77dB PSNR: 25.35dB

Low frequency artifacts



Part 1: Multi-scale denoising: Introduction

I Hypothesis:
Most denoising algorithms are best suited for recovering fine-scale
information.

I Assumption:
Statistics of natural images are invariant to changes in spatial scale.

I Contribution:
A meta-procedure that can be used in combination with existing
denoising methods, yet often improves the results. The
improvements are largest at high noise levels.



Part 1: Multi-scale denoising
Method: Laplacian pyramids



Part 1: Multi-scale denoising: Visual evaluation (1)

noisy σ = 200 ground truth
PSNR: 7.59dB



Part 1: Multi-scale denoising: Visual evaluation (2)

denoised with BM3D denoised with MS-BM3D
PSNR: 18.88dB PSNR: 20.96dB

our result



Part 1: Multi-scale denoising: Conclusions

Conclusions and contributions
I When the noise is high, low frequencies are corrupted, but

most methods are bad at recovering them.
I Our method addresses this problem and improves the results

in many cases.
I Limitation: Cannot improve algorithms that are already

designed to be multi-scale.
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Part 2: Astronomical image denoising

Focus on noise
This section summarizes the following publication:

Title: Removing noise from astronomical
images using a pixel-specific noise model

Authors: H.C. Burger, B. Schölkopf, and S. Harmeling
Venue: IEEE International Conference on

Computational Photography (ICCP). 2011.



Part 2: Astronomical image denoising

First paradigm: 
Focus on images

Second paradigm: 
Focus on noise

Internal knowledge
(BM3D, KSVD)

External knowledge
(FoE, EPLL)

Denoising methods



Part 2: Astronomical image denoising
Astronomical image examples (1)

source: http://www.pa.uky.edu/~jnorce/ast192.html

http://www.pa.uky.edu/~jnorce/ast192.html


Part 2: Astronomical image denoising
Astronomical image examples (2)

source:
http://www.astronomy-pictures.net/star_clusters.html

http://www.astronomy-pictures.net/star_clusters.html


Part 2: Astronomical image denoising
Introduction

I Assumption:
Sensor noise is not AWGN: Dark-current noise due to long
exposure times.

I Hypothesis:
Exploiting statistics of each individual pixel of a sensor leads to
better denoising results

I Contribution:
A denoising method combining a pixel-specific noise model and an
image prior adapted to astronomical images.

We consider dark-current noise, an important noise component in
long-exposure photographs.



Part 2: Astronomical image denoising. Dark-frames

y = x + n
observation true image dark-current

Focus on images:
I x has interesting structure
I n is AWGN

Focus on noise:
I we assume little about x
I n has interesting structure

Dark-current can be recorded with a closed shutter: a
“dark-frame”.



Part 2: Astronomical image denoising
Dark-frame properties

Our assumption was that the noise is not AWG.
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The pixels are not equally noisy. Our assumption is justified.



Part 2: Astronomical image denoising
Method DF-MAPp

Method principle:
I Each pixel is modeled with a Gaussian distribution.
I Neighboring pixels should be similar.

We write down the log-posterior for x :

− log p(x |y) = − log p(y |x)− log p(x) + c,

Log-likelihood of y : − log p(y |x) =
∑

i
(yi−xi−µi )

2

2σ2
i

+ c .
Prior over x : − log p(x) = λ 1

|Ni |

∑
j∈Ni
|xi − xj |p + c .

We minimize the log posterior − log p(x |y) with gradient descent
steps.

DF-MAPp method



Part 2: Astronomical image denoising. Results, Orion (1)

Noisy



Part 2: Astronomical image denoising. Results, Orion (2)

DF-MAP1.4



Part 2: Astronomical image denoising
Conclusion

Conclusions and Contributions
I Pixel-specific statistical description of the noise
I An image prior adapted to astronomical images
I A simple optimization procedure
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Part 3: Image denoising with neural networks

Focus on images, exploiting “external” prior knowledge
This section summarizes the following publications:

Title: Image denoising: Can plain
neural networks compete with BM3D?

Authors: H.C. Burger, C.J. Schuler, and S. Harmeling
Venue: IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR). 2012.



Part 3: Image denoising with neural networks

Title: Image denoising with multi-layer perceptrons, part1:
Comparison with existing algorithms and with bounds

Authors: H.C. Burger, C.J. Schuler, and S. Harmeling
Submitted to: The Journal of Machine Learning Research (JMLR). 2012.
Pre-print: arXiv:1211.1544

Title: Image denoising with multi-layer perceptrons, part2:
Training trade-offs and analysis of hidden activation patterns

Authors: H.C. Burger, C.J. Schuler, and S. Harmeling
Submitted to: The Journal of Machine Learning Research (JMLR). 2012.
Pre-print: arXiv:1211.1552



Part 3: Image denoising with neural networks

First paradigm: 
Focus on images

Second paradigm: 
Focus on noise

Internal knowledge
(BM3D, KSVD)

External knowledge
(FoE, EPLL)

Denoising methods



Part 3: Denoising with Neural Networks:
Motivation

I Engineering vs. learning:
BM3D and other state-of-the-art denoising methods are heavily
engineered.
Q: Is it possible to achieve good results with a learning-based
method?

I Generic vs. internal image priors:
Generic image priors should theoretically be able to yield good
results.
Q: Can we find a practical procedure?

YES!
Our learning-based approach outperforms all competing methods.



Part 3: Denoising with Neural Networks:
What are Neural Networks?

Multi-layer perceptrons:
A multi-layer perceptron (MLP) is a nonlinear function that maps
vector-valued input via several hidden layers to vector-valued
output.

Example:

f (x) = b3 + W3 tanh(b2 + W2 tanh(b1 + W1x)).

Given labeled data, one can learn the set of parameters
θ = {W1,W2,W3, b1, b2, b3}



Part 3: Denoising with Neural Networks.
Applying a learned MLP

How to denoise with a learned MLP:
I The MLP is applied patch-wise (“sliding-window” manner).
I Patches are treated independently.
I We average in areas where patches overlap.



Part 3: Denoising with Neural Networks
Learning to denoise

Learning: We train MLPs to learn the mapping from noisy patches
to clean patches: x̂ = f (y) = f (x + n), using stochastic gradient
descent.

What is new about this?
I We use a large training set (ImageNet, ≈ 6× 106 images)
I We choose MLPs with large capacity (up to four hidden

layers, 2047 hidden units per layer).
I We use large patch sizes (39× 39 and 17× 17)

This was made possible through the use of GPUs.



Part 3: Denoising with Neural Networks
Progress during training
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Progress during training, AWG noise, σ = 25,  dataset: Imagenet

 

 

fine−tuning phase

MLP: (39,3072,3072,2559,2047,17), dataset: all 1.8 ⋅ 10
6
 images

MLP: (17,4x2047,17), dataset: all 1.8 ⋅ 10
6
 images

MLP: (17,4x2047,17), dataset: 10000 images

MLP: (17,4x2047,17), dataset: 1000 images

MLP: (17,4x2047,17), dataset: 100 images

MLP: (13,2x511,13), dataset: all 1.8 ⋅ 10
6
 images

MLP: (13,2x511,13), dataset: 100 images



Part 3: Denoising with Neural Networks
Training insights

Insights regarding the training procedure
I No overfitting due to abundance of training data.
I More (varied) training data always helps.
I There is a trade-off between capacity and training time.

Regarding capacity:
I More hidden units always help.
I There is an ideal number of hidden layers. Too many hidden

layers cause difficult optimization.
I Larger input patches help.
I There is an ideal size for the output patch.
I Fine-tuning (reducing the learning rate at the end) helps.



Part 3: Denoising with Neural Networks
Results: Performance profiles
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Results compared to BM3D, AWG noise, σ = 25

 

 

dataset: Berkeley segmentation

dataset: McGill

dataset: VOC training

dataset: VOC test

dataset: Imagenet
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Results compared to BM3D, AWG noise, σ = 75

 

 

dataset: Berkeley segmentation

dataset: McGill

dataset: VOC training

dataset: VOC test

dataset: Imagenet

For σ=25 and σ=75, the MLPs outperform BM3D (which is
considered to be the best or one of the best methods) on 92.1%
and 97.6% of the images, respectively.



Part 3: Denoising with Neural Networks
Results on other noise types: Stripes

14.68 dB BM3D: 24.38 dB MLP: 30.11 dB



Part 3: Denoising with Neural Networks
Results on other noise types: Salt-and-pepper

12.41 dB median filter: 30.33 dB MLP: 35.08 dB



Part 3: Denoising with Neural Networks
Results on other noise types: JPEG artifacts

27.33 dB SA-DCT2: 28.96 dB MLP: 29.42 dB

2Pointwise shape-adaptive dct for high-quality denoising and deblocking
of grayscale and color images. A. Foi, V. Katkovnik, and K. Egiazarian. IEEE
Transactions on Image Processing (TIP). 2007.



Part 3: Denoising with Neural Networks
Results on other noise types: Poisson noise

2.87 dB GAT+BM3D3: 22.90 dB MLP: 24.26 dB

3Optimal inversion of the generalized Anscombe transformation for
Poisson-Gaussian noise. M. Mäkitalo and A. Foi. IEEE Transactions on Image
Processing (TIP). 2012.



Part 3: Denoising with Neural Networks
Comparison to bounds

Recent work estimates ultimate bounds in denoising quality:
1. “Clustering-based” bounds:

I Is denoising dead? P. Chatterjee and P. Milanfar, IEEE
Transactions on Image Processing (TIP), 2010

2. “Bayesian patch-based” bounds:
I Natural Image Denoising: Optimality and Inherent
Bounds, A. Levin, and B. Nadler, IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2011

I Patch complexity, finite pixel correlations and optimal
denoising, Levin, A. and Nadler, B. and Durand, F. and
Freeman, W.T., European Conference on Computer Vision
(ECCV), 2012

Theoretical bounds are often compared to BM3D because of its
excellent performance.



Part 3: Denoising with Neural Networks
Comparison to bounds (1)

1. “Clustering-based” bounds4:

(images taken from the paper4)

bounds4, σ = 25: 25.61dB 28.94dB
results with MLP, σ = 25: 26.01dB 29.25dB

We can outperform these bounds.

4Is denoising dead? P. Chatterjee and P. Milanfar, IEEE Transactions on
Image Processing (TIP), 2010



Part 3: Denoising with Neural Networks
Comparison to bounds (2)

2. “Bayesian patch-based” bounds5

bounds5 vs. BM3D MLPs vs. BM3D
σ = 10 - 0.07dB
σ = 25 - 0.3dB
σ = 35 0.6dB 0.33dB
σ = 50 0.7dB 0.34dB
σ = 65 - 0.40dB
σ = 75 1.0dB 0.38dB
σ = 170 - 2.19dB

I Our method outperforms BM3D on all noise levels.
I We make important progress toward reaching the bounds.

5Patch complexity, finite pixel correlations and optimal denoising, Levin,
A. and Nadler, B. and Durand, F. and Freeman, W.T., European Conference on
Computer Vision (ECCV), 2012



Part 3: Denoising with Neural Networks
Limitations
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BM3D (baseline)

MLP,trained on sigma=10

MLP,trained on sigma=25

MLP,trained on sigma=35

MLP,trained on sigma=50

MLP,trained on sigma=65

MLP,trained on sigma=75

The MLPs have to be trained on each noise level individually.



Part 3: Denoising with Neural Networks
Results: “Easy” and “hard” images

ea
sy

noisy: 14.16dB BM3D: 29.10dB MLP: 29.98dB

ha
rd

noisy: 14.16dB BM3D: 26.02dB MLP: 25.57dB

The hard images have repeating structure.



Part 3: Denoising with Neural Networks
Combining Neural Networks with BM3D

Q: Can we get the strenghts of BM3D and of neural networks
by combining their results?

noisy image

image denoised 
with method 1

image denoised
 with method 2

denoised image

w
h
i
t
e
n

combine using an MLP
f(x, W) = y

x
y

The parameters W are
learned on a training set

We combine the results of BM3D and of an MLP using a second
MLP (“E-MLP”).



Part 3: Denoising with Neural Networks: E-MLPs

A: YES!
The results are usually
better than the best of
the inputs.

ea
sy

BM3D: 29.10dB
MLP: 29.98dB
E-MLP: 30.25dB

ha
rd

BM3D: 26.02dB
MLP: 25.57dB
E-MLP: 26.18dB

YES! Better results overall:

bounds6 vs. BM3D MLPs vs. BM3D E-MLPs vs. BM3D
σ = 10 - 0.07dB 0.15dB
σ = 25 - 0.3dB 0.38dB
σ = 35 0.6dB 0.33dB 0.45dB
σ = 50 0.7dB 0.34dB 0.52dB
σ = 75 1.0dB 0.38dB 0.53dB
σ = 170 - 2.19dB 2.32dB

6Patch complexity, finite pixel correlations and optimal denoising, Levin,
A. and Nadler, B. and Durand, F. and Freeman, W.T., ECCV, 2012



Part 3: Denoising with Neural Networks
Understanding

We achieved outstanding image denoising performance with MLPs.

But:
How do the MLPs work?

Understanding the functioning principle of our MLPs seems
impossible at first.

Two tools will help us:
I Analyzing input and output weights.
I Finding the input pattern maximizing the activation of a given

hidden unit.



Part 3: Denoising with Neural Networks
Understanding: Feature detection/generation

MLP with a single hidden layer (17, 2047, 17):
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If a feature is detected, the same feature is copied to the output.



Part 3: Denoising with Neural Networks
Understanding: Feature detection/generation

MLP with four hidden layers (17, 4× 2047, 17):
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Input patterns are found via activation maximization7
If a feature is detected, the same feature is copied to the output.

7Understanding Representations Learned in Deep Architectures. Erhan,
D. and Courville, A. and Bengio, Y.,Technical Report 1355, Université de
Montréal/DIRO. 2010



Part 3: Understanding. Noise removal via saturation
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Part 3: Denoising with Neural Networks
Understanding

How do the MLPs work?

Key insights:

1. Noise is attenuated through saturation.
2. Image information is preserved due to the high activation

values of the corresponding feature detectors/generators.



Part 3: Denoising with Neural Networks
Conclusion

I We were able to achieve state-of-the-art image denoising
performance using MLPs:

I Best performance of all denoising algorithms.
I Can beat clustering-based bounds.
I Getting close to Bayesian patch-based bounds.

I We achieve good results on other types of noise.
I Understanding denoising MLPs: MLPs detect features and

generate the same features. Noise is removed via saturation.
I Limitations:

1. MLPs have to be trained on each noise level individually.
2. MLPs do not reach state-of-the-art performance on images

with repeating structure.
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Conclusion: Thesis Contributions

First paradigm: 
Focus on images

Second paradigm: 
Focus on noise

Internal knowledge
(BM3D, KSVD)

External knowledge
(FoE, EPLL)

Denoising methods



Conclusion: Thesis Contributions

Image denoising is a long-standing problem.

Three contributions were presented:
I Part 1 How to improve existing methods at high noise levels.
I Part 2 How to denoise in the setting where the noise has

structure.
I Part 3 How to achieve state-of-the-art denoising results with a

learning-based approach.

End of talk.





Appendices



Appendix overview

I Multi-scale denoising
I Astronomical image denoising
I MLPs:

I MLPs
I BM-MLPs
I E-MLPs
I Other restoration tasks with MLPs?

I Deconvolution with MLPs
I Others

I Other architectures?
I Miscellaneous

I Potential future work
I Deep learning
I Repeated application



Multi-scale denoising: Denoising by down-scaling

→ →
7.61 dB 21.04 dB 20.17 dB
↓ ↓ ↓
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Multi-scale denoising: Denoising lower frequencies (1)



Multi-scale denoising: Denoising lower frequencies (2)
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Part 1: Multi-scale denoising: Thresholding

true denoised thresholded



Multi-scale denoising: Thresholding (2)
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Multi-scale denoising: Training images



Multi-scale denoising: Test images



Part 1: Multi-scale denoising: KSVD vs. BLSGSM 8

8Image denoising via sparse and redundant representations over learned
dictionaries. Elad, M. and Aharon, M. IEEE Transactions on Image Processing
(TIP), 2006



Part 1: Multi-scale denoising: All vs. BM3D
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Multi-scale denoising: Related work

Estrada’s method:
“Multi-pass” denoising [1] to handle “large scale” noise

Ifinal(x , y) = α(x , y)I∗(x , y) + (1− α(x , y))I∗
hu(x , y), (1)

where
α(x , y) = |∇I∗|. (2)

Intuition:
Preserve sharp detail where the high resolution image has edge
structure. For more uniform regions, prefer a denoised estimate
computed at a coarser scale.



Multi-scale denoising: Results (1)
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Multi-scale denoising: Results (2)
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Multi-scale denoising: Results (3)
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Multi-scale denoising: Results (4)
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Multi-scale denoising: Results (5)
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Multi-scale denoising: Results (6)
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Multi-scale denoising: Results (7)
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Multi-scale denoising: Results (8)
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baseline Total Variation
MS−Total Variation (our approach)
Estrada−Total Variation



Multi-scale denoising: Results (9)
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baseline Stoch. Den.
MS−Stoch. Den. (our approach)
Estrada−Stoch. Den.
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Dark-frame denoising
Related work

An approach by Manuel Gomez-Rodriguez et al. [2]:
I Assumes a library of dark-frames is given
I Attempts to minimize the discrete gradient of the image at

some pixels
I Creates an artificial dark-frame that is a convex combination

of a subset of dark-frames in the library.
Solving this problem involves a QP.



Dark-frame denoising
Results, Orion (1)

Noisy



Dark-frame denoising
Results, Orion (2)

BLS-GSM



Dark-frame denoising
Results, Orion (3)

QP



Dark-frame denoising
Results, Orion (4)

DF-MAP1.4



Dark-frame denoising
Results, Milky Way (1)

Noisy



Dark-frame denoising
Results, Milky Way (2)

QP



Dark-frame denoising
Results, Milky Way (3)

DF-MAP1.4
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Denoising with Neural Networks:
More “easy” images

MLP vs. BM3D: +0.89dB MLP vs. BM3D: +0.86dB MLP vs. BM3D: +0.86dB

MLP vs. BM3D: +0.84dB MLP vs. BM3D: +0.82dB MLP vs. BM3D: +0.82dB

Images where the MLP outperforms BM3D, for σ = 25.



Denoising with Neural Networks:
More “hard” images (1)

MLP vs. BM3D: -2.09dB MLP vs. BM3D: -1.03dB MLP vs. BM3D: -0.75dB

Images where BM3D outperforms the MLP, for σ = 25.



Denoising with Neural Networks:
More “hard” images (2)

MLP vs. BM3D: -1.09dB MLP vs. BM3D: -0.66dB

MLP vs. BM3D: -0.54dB



Denoising with Neural Networks:
Limitations
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BM3D (baseline)

MLP,trained on sigma=10

MLP,trained on sigma=25

MLP,trained on sigma=35

MLP,trained on sigma=50

MLP,trained on sigma=65

MLP,trained on sigma=75

The MLPs have to be trained on each noise level individually.



Denoising with Neural Networks:
Limitations: Possible solution

We tried to train an MLP on several noise levels.
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BM3D

us, trained on several noise levels

GSM

KSVD

BM3D, assuming σ = 25

us, trained on σ = 25



Denoising with Neural Networks:
Other limitations

Are there other limitations?
I Handling large-scale noise (e.g. wide bands)
I Not clear if possible to handle other quality measures (e.g.

SSIM), because we currently assume patches to be
independent. (We could optimize the patch-wise SSIM).
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BM-MLPs: Intuition (1)

Can neural networks learn arbitrary mappings?



BM-MLPs: Intuition (2)

Can neural networks learn arbitrary mappings?

Probably not.



BM-MLPs: Intuition (3)

Can neural networks learn arbitrary mappings?



BM-MLPs: Intuition (4)

Can neural networks learn arbitrary mappings?

Probably not.



BM-MLPs: Intuition (5)

BM3D is effective on repetitive images due to block matching:

Block-matching might be difficult to learn with a feed-forward
architecture.



Part 3: Denoising with Neural Networks
Why are some images hard to denoise?

BM3D is effective on repetitive images due to block matching:

Q: Can we achieve better results by combining block matching
with neural networks?



Part 3: Denoising with Neural Networks
Neural networks combined with block matching: Results

A: Combining block matching with neural networks does not help
much.

image BM3D NLSC MLP BM-MLP
Barbara 30.67dB 30.50dB 29.52dB 29.75dB
Boat 29.86dB 29.86dB 29.95dB 29.92dB
C.man 29.40dB 29.46dB 29.60dB 29.67dB
Couple 29.68dB 29.63dB 29.75dB 29.73dB
F.print 27.72dB 27.63dB 27.67dB 27.63dB
Hill 29.81dB 29.80dB 29.84dB 29.87dB
House 32.92dB 33.08dB 32.52dB 32.75dB
Lena 32.04dB 31.87dB 32.28dB 32.17dB
Man 29.58dB 29.62dB 29.85dB 29.86dB
Montage 32.24dB 32.15dB 31.97dB 32.11dB
Peppers 30.18dB 30.27dB 30.27dB 30.53dB

Block-matching MLP compared to plain MLPs and other algorithms for
σ = 25.



BM-MLPs: Where do BM-MLPs help?

The MLP with block-matching outperforms the plain MLP on this
image. Regions where the block-matching MLP is better are

highlighted.
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E-MLPs: Justification
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Results compared to BM3D

 Berkeley dataset, AWG noise, σ = 50

No method is always the best. Left: On average, MLPs outperform
BM3D on the Berkeley segmentation dataset. However, on some images,
the MLP is much worse than BM3D. No method is the best on all
images. Right: Pixels in image “Lena” where BM3D is worse than an
MLP are white, pixels where BM3D is better are black. No method is the
best on all parts of the image.



Part 3: Denoising with Neural Networks
Combining Neural Networks with BM3D

E-MLP:
image BM3D NLSC MLP MLP and BM3D
Barbara 27.21dB 27.13dB 25.37dB 26.95dB
Boat 26.72dB 26.73dB 27.02dB 27.11dB
C.man 26.11dB 26.36dB 26.42dB 26.75dB
Couple 26.43dB 26.33dB 26.71dB 26.78dB
F.print 24.53dB 24.25dB 24.23dB 24.57dB
Hill 27.14dB 27.05dB 27.32dB 27.40dB
House 29.71dB 29.88dB 29.52dB 30.00dB
Lena 28.99dB 28.88dB 29.34dB 29.46dB
Man 26.76dB 26.71dB 27.08dB 27.13dB
Montage 27.69dB 28.02dB 28.07dB 28.34dB
Peppers 26.69dB 26.73dB 26.74dB 27.18dB

Ensembling BM3D and MLP with an MLP, σ = 50.
The results are usually better than the best of the two inputs.



E-MLPs
Whitening

input:

output:



E-MLPs: Train on residuals?
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E-MLPs
Results: σ = 10
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Results compared to BM3D
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Results compared to MLP



E-MLPs
Results: σ = 25
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Results compared to BM3D
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Results compared to MLP



E-MLPs
Results: σ = 35
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Results compared to BM3D
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Results compared to MLP



E-MLPs
Results: σ = 50
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Results compared to BM3D

0 500 1000 1500 2000 2500

0

0.5

1

1.5

sorted image index
im

p
ro

v
e
m

e
n
t 
in

 P
S

N
R

o
v
e
r 

M
L
P

 [
d
B

]

Results compared to MLP



E-MLPs
Results: σ = 75
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Results compared to BM3D
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Results compared to MLP



E-MLPs
Results: σ = 170
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Results compared to BM3D
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Other restoration tasks with MLPs?

I Denoising: Find a clean image, given a noisy one.
I “Artifact removal”: Remove e.g. JPEG-artifacts.

I Deconvolution: Find a sharp image, given a blurry one.
I Super-resolution: Find a high-resolution image, given a

low-resolution image.
I Inpainting: Restore missing image content.
I Demosaicking: Reverse the effect of the color filter array.



Other restoration tasks with MLPs?
1. Deconvolution

→
corrupted → clean



Other restoration tasks with MLPs?
1. Deconvolution

Deconvolution comes in different flavors:
I Non-blind, not spatially varying.

I In the case “one kernel, one MLP”: “Solved” by Schuler et
al. 9.

I Future work: Can one MLP handle multiple (all?) kernels?
I Non-blind, spatially varying. New difficulty: Handle the

smooth variation of the blur over the image. Use EFF 10?
I Blind, not spatially varying. New difficulty: The MLP has to

predict the blur kernel, given the whole image.
I Blind, spatially varying. Most difficult.
9A machine learning approach for image deconvolution. Schuler, C.J. and

Burger, H.C. and Schölkopf, B. and Harmeling, S. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). 2013.

10Efficient filter flow for space-variant multiframe blind deconvolution,
Hirsch, M. and Sra, S. and Schölkopf, B. and Harmeling, S. IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2010.



Deconvolution with neural networks

Title: A machine learning approach
for image deconvolution

Authors: C.J. Schuler, H.C. Burger, B. Schölkopf and S. Harmeling
Accepted at: IEEE International Conference on

Computer Vision and Pattern Recognition (CVPR). 2013.



Image deconvolution with neural networks: Idea

Problem:

y = x ∗ v + n
Find x , given y and v .

φ(x) = x ∗ v + n
↓ ↓ ↓

F−1(R � F(φ(x))) = F−1(R � F(x)� F(v)) + F−1(R � F(n))
z = xcorrupted + ncolored



Image deconvolution with neural networks: Results

clean corrupted Krishnan et al. MLP
20.36 dB 25.81 dB 27.02 dB



Image deconvolution with neural networks: Results
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DEB−BM3D: avg. 0.40 dB

IDD−BM3D: avg. 0.23 dB

Krishnan et al.: avg. 0.62 dB

Levin et al.: avg. 0.68 dB

EPLL: avg. 0.74 dB
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DEB−BM3D: avg. 0.47 dB

IDD−BM3D: avg. 0.22 dB

Krishnan et al.: avg. 0.60 dB

Levin et al.: avg. 0.67 dB

EPLL: avg. 0.52 dB
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(c) Gaussian blur σ=3.0

AWG noise σ=0.04
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DEB−BM3D: avg. 0.45 dB

IDD−BM3D: avg. 0.30 dB

Krishnan et al.: avg. 0.43 dB

Levin et al.: avg. 0.44 dB

EPLL: avg. 0.68 dB
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AWG noise σ=0.01
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DEB−BM3D: avg. 0.50 dB

IDD−BM3D: avg. 0.23 dB

Krishnan et al.: avg. 0.43 dB

Levin et al.: avg. 0.53 dB

EPLL: avg. 0.85 dB



Image deconvolution with neural networks: Results

Defocused Image MLP
Removal of defocus blur in a photograph. The true PSF is approximated
with a pillbox.
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Other restoration tasks with MLPs?
2. Super-resolution

Super-resolution:
I Naive approach: Small patch comes in, large patch comes out.
I Problem: How to we acquire training data? Specifically, what

is the “correct” low-pass filter to create low-resolution images
from high-resolution images?

I Potential challenge: High-dimensional outputs are difficult for
MLPs.



Other restoration tasks with MLPs?
3. Inpainting

Inpainting comes in different flavors:
I “non-blind”: The region to be in-painted is known.
I “blind”: The region to be in-painted is not known.

Obtaining training data is probably easy.

Possible challenges:
I Potentially difficult if the region to be inpainted is large.

Possible solutions: Multiple in-painting iterations, multi-scale
procedure...

I Potentially difficult to identify region to be in-painted (might
need a prior over the shape of the region to be inpainted).



Other restoration tasks with MLPs?
4. Demosaicking

Demosaicking:
I Obtaining training data should be easy.
I Existing algorithms already obtain high PSNR values.

Therefore probably difficult to achieve impressive
improvements (the high PSNR regime seems difficult for
MLPs).
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Other architectures? Motivation
Some output weights:

Many features are translated or rotated versions of each other.
Wasteful use of parameters



Other architectures? Potential candidates

Some potential alternatives to plain MLPs:
I Convolutional nets 11. Already used for denoising 12.
I Tiled convolutional nets 13.
I Sparsity-enforcing machines 14.
I Potentially many others...

11Gradient-based learning applied to document recognition. Yann LeCun
et al. 1998.

12Natural image denoising with convolutional networks, Viren Jain and
Sebastian Seung. NIPS 2008

13Tiled convolutional neural networks, Le, Quoc V et al. NIPS 2010
14A unified energy-based framework for unsupervised learning, Marc

Aurelio Ranzato et al. AISTATS 2007



Other architectures? Trade-offs

CNNs and Tiled CNNs reduce the number of parameters through
1. Local receptive fields, and
2. Parameter sharing.

Pro: Reducing the number of parameters is especially useful when
labeled data is scarce.
Pro: CNNs and Tiled CNNs can learn invariances: Some translation
invariance for CNNs, some degree of rotation invariance for Tiled
CNNs.
Con: Specialized architectures are potentially less powerful than
MLPs.
Con: Many choices of architectures exist. Not clear a priori which
is best. In that case, it is often best to start with the simplest
solution (i.e. MLPs).
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Potential future work

I Currently, patches are considered to be independent. This is
clearly not ideal. How can we handle patch dependencies?
Handling this should improve results (cf. FoE).

I Can we have an MLP that not only denoises well, but also
makes a prediction regarding its accuracy? Which parts of the
image are denoised well, which are not?

I How can we handle all noise levels with one MLP?
I How can we have a shorter training procedure?
I How can we handle images with repeating structure well?
I Can we optimize other quality measures (e.g. SSIM)?
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Deep learning?

What is deep learning?
I Refers to an unsupervised, greedy layer-wise training

procedure.
I Usually each layer is trained to reconstruct its input, under

some constraints.
I After pre-training, an architecture is fine-tuned on an

unrelated supervised task.

Differences and similarities:
I Similarity: Our nets are “deep”.
I Similarity: Our nets resemble denoising auto-encoders.
I Difference: One-phase training.
I Difference: Abundance of labeled data.



Deep learning?

Can we benefit from deep learning?
I In 15, RBMs are pre-trained on image data and fine-tuned for

image denoising. The results are disappointing compared to
our MLPs.

I Our preliminary experiments with stacked denoising
auto-encoders are also disappointing.

I Open question: Can we use deep learning to train
architectures with more than four hidden layers?

Deep learning is especially useful when labeled data is scarce. We
have plenty of labeled data.

15Boltzmann Machines and Denoising Autoencoders for Image
Denoising, Cho, Kyunghyun. arXiv preprint arXiv:1301.3468. 2013.
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Repeated application of MLPs
What happens when we apply an MLP on a denoised image?

clean noisy, PSNR: 20.18dB

first application, PSNR: 32.58dB second application, PSNR: 30.21dB



Repeated application of MLPs
... And what happens when we continue?

third application, PSNR: 28.74dB fourth application PSNR: 27.73dB

99th application, PSNR: 11.37dB 100th application, PSNR: 11.35dB
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