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Abstract. Different methods for image denoising have complementary
strengths and can be combined to improve image denoising performance,
as has been noted by several authors [11, 7]. Mosseri et al. [11] distinguish
between internal and external methods depending whether they exploit
internal or external statistics [13]. They also propose a rule-based scheme
(PatchSNR) to combine these two classes of algorithms. In this paper,
we test the underlying assumptions and show that many images might
not be easily split into regions where internal methods or external meth-
ods are preferable. Instead we propose a learning based approach using
a neural network, that automatically combines denoising results from
an internal and from an external method. This approach outperforms
both other combination methods and state-of-the-art stand-alone image
denoising methods, hereby further closing the gap to the theoretically
achievable performance limits of denoising [9]. Our denoising results can
be replicated with a publicly available toolbox®.

1 Introduction

Image denoising is the long-standing problem of finding a clean image, given a
noisy one. Usually, one seeks to denoise images corrupted with additive white
Gaussian (AWG) noise, where it is often assumed that the variance of the noise is
known. Most often, the images one wishes to denoise are so-called natural images
(i.e. every-day scenes). The quality measure of interest is the peak signal-to-noise
ratio (PSNR), which is monotonically related to the mean squared error.

Denoising methods can be divided into internal and external methods [11]:
(i) internal methods denoise image patches using only other noisy image patches
from the same image. In contrast, (ii) external methods denoise image patches
using external clean image patches (i.e. patches coming from a database of clean
images). For instance:

Internal denoising methods:

— NLM (non-local means) [2] denoises a noisy image using only patches from
the same image: No explicit assumptions are made regarding all natural
images.

— BM3D [6] is conceptually similar to NLM, but uses a more effective noise-
reduction strategy than NLM, which averages similar-looking patches.

! http://webdav.is.mpg.de/pixel/prj/neural_denoising/gcpr2013.html
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External denoising methods:

— EPLL [14] denoises image patches using a probabilistic prior for the image
patches learned on a database of clean image patches.

— MLP is the currently best performing method, see [4, 3]. It uses a multi-layer
perceptron to automatically learn a denoising method.

Other denoising methods can be less clearly classified, e.g. LSSC [10] learns a
dictionary on the noisy image at hand and exploits this dictionary in a manner
reminiscent of BM3D (speaking for an internal method), but the initialization
of the dictionary is also important. Therefore it seems that external information
also plays a role in LSSC, similarly for KSVD [1].

Recent denoising methods (such as BM3D [6], LSSC [10], EPLL [14]) perform
on average equally well. This is surprising, considering that the methods rely on
fundamentally different approaches. This has naturally led to the question if
there are inherent limits to how well it is possible to denoise, and if so, whether
current methods are approaching these limits. Even though the approaches taken
are different [5, 9], the consensus is that current methods are indeed not far away
from theoretical limits, especially at lower noise levels.

Contributions: In this paper, we will study the performance of internal and
external methods across an image database and patch-wise across single images.
Furthermore, we propose a method that automatically combines the advantages
of external and internal approaches using learning. In particular our contribu-
tions are:

1. We show that internal denoising methods tend to be better for images de-
picting artificial objects, whereas external denoising methods are better for
images of natural scenes.

2. We show that there is no trivial rule to decide whether to use external or
internal denoising on a patch-by-patch basis.

3. We show that a combining strategy can be learned by an MLP that outper-
forms both internal and external approaches across a wide range of images.

4. We show that the new combined approach gets close to theoretical bounds.

2 Related work

Work on image denoising is extensive and we already mentioned some of the best
performing methods in the introduction. In the following we limit our discussion
on publications that also try to combine different denoising methods:

RTF. Jancsary et al. [7] observe that there is no single best denoising method,
but that even in a single image depending on the image content one method
might be preferable over others (see Fig. 5 in [7]). For that reason, they not
only consider regression tree fields (RTFs) based on some filterbank (RTFpiain),
but they also study a version that additionally exploits the output of BM3D
(RTFpMmsp) and a version that additionally uses the output of four denoising
methods simultaneously (RTF,y;). Their finding is that the approach combining
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several methods is the best. In general their approach is based on learning RTF's
on a large dataset of images, thus automatically determining how image features
and different denoising methods can be combined. However, they do not discuss
the distinction between internal and external methods.

PatchSNR. Zontak and Irani [13] study the merits of internal vs. external
statistics for the task of super-resolution and also for denoising, where they
observe that NLM works better with internal noisy patches (internal-NLM) than
with noise-free patches from external images (external-NLM). Following up on
this work, Mosseri et al. [11] introduce the corresponding distinction between
internal and external denoising algorithms. To combine the advantages of these
two paradigms, they propose a patch-wise signal-to-noise-ratio called PatchSNR,
which as they claim indicates whether an internal (low PatchSNR) or an external
(high PatchSNR) denoising method should be applied. The resulting denoised
patches are blended together to form a single image, and they show that their
results are slightly better than the stand-alone methods.

EPLL vs. BM3D MLP vs. BM3D
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Fig. 1. No method is always the best. (a) Performance profile of EPLL vs. BM3D. (b)
Performance profile of MLP vs. BM3D.

3 Internal vs. external denoising

3.1 Comparison on a large dataset of images

To compare the performance of two denoising algorithms, we plot the sorted
differences between PSNRs achieved on a large set of noisy images. We call such
a plot a performance profile. Fig. 1 (a) shows such a performance profile for
EPLL [14], an external method, against BM3D [6], an internal method. We see
that EPLL is worse than BM3D on 40% of the image images (blue line below
zero) and better than BM3D on 60% of the images (blue line above zero). On
some images EPLL is much better (about 0.5dB), while on other images BM3D
is much better (more than 1dB in the extreme case).
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Fig. 1 (b) shows a similar comparison for MLP [4, 3] (also an external method)
vs. BM3D. We see that MLP is the clear winner, being superior on almost all
images (blue line above zero). However, there are also some images where BM3D
wins (close to image index zero). Even though Fig. 1 (b) shows that MLP is good
over a large range of images, we can not conclude that one algorithm is the best
on all images.

[

MLP vs. BM3D: 40.82dB

:

MLP vs. BM3D: -1.09dB MLP vs. BM3D: -0.66dB MLP vs. BM3D: -0.54dB

Fig. 2. MLP vs. BM3D for ¢ = 25: MLP wins (top row), BM3D wins (bottom row).

Is there some underlying principle that would allow us to predict whether
an internal (such as BM3D) or an external algorithm (such as MLP) is better
on a given image? To answer this question, we show in the first row of Fig. 2
images where MLP excels and in the second row images where BM3D is better.
We notice that MLP tends to outperform BM3D on images containing smooth
areas or irregular textures, whereas BM3D outperforms MLP mainly on images
with regular, repeating textures (many more images supporting this in the sup-
plementary material). Put differently, MLP is better for images of nature, while
BMS3D is better for images of man-made objects. This also makes sense intu-
itively, since an internal method like BM3D exploits the self-similarity of images
which is much higher in images showing highly regular structures, while common
images of nature show many irregular patterns, which are not easily matched to
each other by an internal method.

Conclusion. We hypothesize that current internal methods are good at repeti-
tive image structure, while external methods are good at irregular image content.
In order to combine the strength of both paradigms, can we easily decide on a
patch-by-patch level whether to apply internal or external denoising? To answer
this question we compare internal and external denoising methods pixel-wise on
single images.
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3.2 Pixel-wise comparison on single images

Having denoised a given image with two methods, we can create a so-called
preference image that shows a white pixel if the first method is closer to the
truth or a black pixel if the second method is better. Such a visualization to
compare methods pixel-wise has been previously used in [7] to compare four
methods simultaneously (with four colors, Fig. 5 in [7]) and in [11].

%?‘ i
original EPLL vs. BM3D MLP vs. BM3D PatchSNR

Fig. 3. Preference images and PatchSNR for image “woman” (o = 25) where exter-
nal methods (EPLL, MLP) perform better than internal methods (BM3D). EPLL:
24.86dB, MLP: 25.43dB, BM3D 24.52dB.

Fig. 3 shows the image “woman” used by Mosseri et al. [11], who compare
the performance of internal-NLM against external-NLM on that image. They
conclude that smooth image patches should preferentially be denoised with an
internal denoising method, whereas patches with details should rather be de-
noised with an external denoising method. Furthermore, they conclude that the
higher the noise, the higher the preference for internal denoising. To exploit these
insights, they apply the PatchSNR (briefly introduced in Sec. 2). The higher
the PatchSNR, the higher the preference for external denoising, and vice-versa
for internal denoising. [11] shows that this approach is effective for combining
internal-NLM and external-NLM. Their approach also yields better results when
combining BM3D and EPLL. However, the two preference images (two middle
images in Fig. 3) show that the preference of EPLL or MLP over BM3D is much
less clear-cut. This is somewhat surprising since the image “woman” is an exam-
ple where the external methods EPLL and MLP outperform the internal method
BM3D. Also, we used the ground truth to decide which method is better and
still do not see a clear pattern for which pixels should use which method.

As a second example, we consider image “Barbara” (see Fig. 4) which is an
example of an image where internal methods such as BM3D are better than
external methods like EPLL and MLP. The reason for this is that there is a
repetitive pattern on the table cloth and the trousers which are hard to recover
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original EPLL vs. BM3D MLP vs. BM3D PatchSNR

Fig. 4. Preference images and PatchSNR for image “Barbara” (o = 50), where external
methods (EPLL, MLP) perform worse than internal methods (BM3D). EPLL: 24.83dB,
MLP: 25.28dB, BM3D: 27.22dB.

for external methods. This is supported by the two preference images in the
middle of Fig. 4. We clearly see dark areas for the trousers and the table cloth,
indicating that BM3D is preferred for those regions. However, across large areas
of the image, there is not a clearly preferred approach. On the other hand,
PatchSNR gives a strong preference to BM3D on the smooth regions of the
image and low preference for the trousers and the table cloth. This is opposite
to our findings.

Conclusion. For the analysis of these two images we draw the following con-
clusions (there are more images in the supplementary material supporting our
findings):

1. External denoising is usually better on irregular and smooth regions.

2. Internal denoising is usually better on regular, repeating structures.

3. Overall there is no easy way to determine which is better. In particular, our
findings contradict those of the PatchSNR criterion [11].

Further notes on PatchSNR: Why are our conclusions different from Mosseri
et al.’s [11]? The reason lies in the patch size of the methods: [11] compares
external- vs. internal-NLM, both of which use small (7 x 7) patches. External
methods using small patch sizes tend to overfit the noise, especially for smooth
patches, which has been also noted by Mosseri et al. [11], as well as by Zontak and
Irani [13]. In contrast, we consider MLP and EPLL. MLP uses 39 x 39 patches.
Even though EPLL uses small (8 x8) patches, it requires several iterations, which
spreads out image information and therefore effectively increases the patch size.
On the other hand, internal methods (like BM3D) using small patches are less
prone to this effect due to the fact that similar patches are likely to be found in
the vicinity of a given patch [13].

4 Learning to combine internal and external methods

Since we have seen that there is no trivial criterion to decide whether an internal
or an external method should be applied to a given patch, we propose to use
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a learning approach based on neural networks to combine the complementary
strengths of internal and external denoising methods (see Sec. 3.1).

Technically, we could combine any number of denoising methods with a neu-
ral network (similar to the learning-based approach proposed by [7], who com-
bine the results of four denoising algorithms). However, we will show that it is
sufficient to combine one internal method (BM3D) with one external method
(MLP). Our method uses the original noisy image patch together with the de-
noised patches of MLP and BM3D as input. We choose do so because applying
a denoising algorithm inevitably removes information contained in the noisy im-
age. However, exactly that information might be missing in the denoised patches
by BM3D or MLP.

Multi-layer perceptrons. The neural network we employ is a multi-layer
perceptron that non-linearly transforms a vector-valued input into a vector-
valued output. It is composed of a sequence of differentiable functions whose
parameters can be trained efficiently given labeled training data with a com-
bination of the back-propagation algorithm and stochastic gradient descent [§].
Usually, layers performing an affine transformation and layers performing an
element-wise non-linearity (such as tanh) are applied in sequence. For example,
f(z) = Watanh(Wix 4 by) + b2 is a multi-layer perceptron with a single hidden
layer whose parameters 0 = {Wy, Wa, b1, b2} can be learned.

Training. Our neural network takes as input x the concatenation of three input
patches, one from the noisy image, and one from each of the denoising results
(BM3D and MLP), extracted from the same image location. The output of the
neural network is a clean image patch. As a pre-processing step, we approxi-
mately de-correlate the three input patches using a pre-learned 3 x 3 matrix
(one for each noise level). De-correlating the inputs of a neural network is con-
sidered good practice [8]. In our case the use of a 3 x 3 whitening matrix can be
intuitively justified by the fact that two of the inputs (BM3D and MLP) look
very similar (see supplementary material).

To generate training data, we add noise to images from a large image data
set, and apply both BM3D and MLP. This provides us the input/output pairs
required for training. Note that BM3D and MLP are computationally relatively
inexpensive, allowing us to generate plentiful training data (we denoised approx-
imately 9 x 10* images).

Hyper-parameters. We use four hidden layers with 2047 hidden units each.
The input patches are each of size 25 x 25, the output patch are of size 17 x 17.
We also experimented with smaller architectures, leading to worse results, see
supplementary material. We used a constant learning rate of 0.1, as suggested
in [4].

Training and running times. We train six neural networks, one for each of
the noise levels o = {10, 25, 35, 50, 75, 170}. Training each neural network is
computationally intensive: About 4 x 10® training samples are needed before
the results converge. This requires roughly one month of training time on a
GPU. However, the running time of applying a trained neural network to a
noisy image is relatively short: Approximately one minute on a CPU for an
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image of size 512 x 512 (such as “Lena”). Running times on GPU are less than
six seconds. This compares favorably to other denoising methods such as EPLL
(approximately five minutes on CPU) or KSVD [1] and LSSC [10] (approximately
one hour on CPU), but unfavorably to BM3D (about five seconds on CPU). The
total computation time of our method on an image of size 512 x 512 is therefore
about two minutes on CPU: One minute for MLP, a few seconds for BM3D and
one minute for our neural network combining MLP and BM3D.

5 Results

In the following, we show that combining MLP and BM3D with a neural network
(as explained in the previous section) outperforms the current state-of-the-art
stand-alone methods as well as previous attempts to combine denoising methods.
We can also show that the proposed approach further closes the gap to the
theoretical limits of denoising.

Comparison against competing methods. Tab. 1 compares our method to
the combination approach of [11] as well as to stand-alone denoising methods
on a (held-out) test set of 100 images, for six different noise levels. In all tested
settings, our approach outperforms the existing methods.

o ||[Mosseri et al. [11]|  our results BM3D|EPLL|MLP
BM3D and EPLL|{BMS3D and MLP|| [14] | [6] | [3]
170 20.14 21.96 19.85 | 21.21|21.87
75 24.16 24.53 23.96 | 24.16 |24.42
50 25.64 25.95 25.45 25.50(25.83
35 27.07 27.36 26.89 |26.98 (27.29
25 28.54 28.79 28.35 | 28.47 (28.75
10 33.17 33.34 33.11 | 33.17|33.31

Table 1. Average PSNR values [dB] on 100 test images from the BSDS300 dataset.
Note that MLP [3] is better than the blend of BM3D and EPLL proposed by Mosseri
et al [11] at every noise level.

Table 2 compares our method to RTF-based methods [7] and to [11] on
the dataset used in [7]. Our method achieves the highest PSNR also on these
images. Note that it outperforms also RTF,); even though RTF,;; combines four
denoising methods, whereas we combine only two.

single methods|| FoE [12] |BM3D [6]| EPLL [14] [LSSC [10]|RTFpuain [7]] MLP
PSNR 24.47dB~ | 25.09dB | 25.18dB | 25.09dB | 24.76dB |25.45dB

combining m. ||RTFsmsp [7]|RTFan [7]|Mosseri [11]|our result
PSNR 25.38dB 25.51dB | 25.30dB | 25.58dB
Table 2. Results obtained with our approach and other methods on the dataset of
images used in [7], with ¢ = 50. Top: Stand-alone methods, bottom: methods combining
the results of other methods. Note that MLP outperforms both RTFgmsp [7] and
Mosseri et al. [11]. Our approach outperforms all competitors.
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Performance profiles against the best input method. We now compare
the results achieved with our method against the input methods (BM3D and
MLP). For each image in a dataset of 2500 test images (that have not been used
for training), we compare our method against the best of the two input methods
(BM3D and MLP) for that image. Our method outperforms both BM3D and
MLP on 76.92%, 89.12%, 96.92%, 99.12%, 98.8% and 93.48% of the images
on the noise levels o = 10,25, 35,50, 75, and 170, respectively. Figure 5 plots
these results as performance profiles for four noise levels (more results in the
supplementary material). Our method usually achieves results that are better
than the best of the two inputs methods.

Results compared to best input, o = 10 Results compared to best input, = 25 Results compared to best input, & = 50 Results compared to best input, = 170
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Fig. 5. Our results are better than the best of the two inputs in almost all cases.

Comparison against bounds. Tab. 3 compares our results against recently
estimated bounds for image denoising [9]. Our proposed method that combines
BM3D and MLP gets much closer to the bounds (last row). For o = 50, half
of the remaining possible gain over MLP is achieved. Note, that for noise levels
o = 10 and o = 25, the bounds are difficult to estimate (the lower the noise,
the more difficult). On these noise levels, our method achieves still better results
than MLP, proving by examples that the limits are not yet reached.

06=100=250=350=500=750=170
gain over BM3D by MLP |[3] 0.07 03 033 034 038 219
gain over BM3D by our results| 0.15 0.38 0.45 0.52 0.53 2.32
possible gain over BM3D [9] - - 0.6 0.7 1
Table 3. Improvements in dB over BM3D on 2500 test images.

6 Conclusion

Internal and external denoising approaches have complementary strengths and
weaknesses. It has been previously claimed that external methods are preferred
for patches with details, whereas internal methods are better for smooth patches.
Our conclusions contradict previous findings: Internal methods are better on re-
gions with regular, repeating structures. For irregular patterns, external methods
are better. We have presented a simple patch-based method using neural net-
works that effectively combines the results of two denoising algorithms. The
results surpass those of any previously published method. Bayesian patch-based
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bounds on image denoising have been estimated for medium to high noise levels,
but are difficult to estimate at low noise levels. It was therefore not known if
further improvements over BM3D at low noise levels were possible, but we have
shown by example that improvements over BM3D were indeed possible at low
noise levels.
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