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Abstract

For digital photographs of astronomical objects, where
exposure times are usually long and ISO settings high,
the so-called dark-current is a significant source of noise.
Dark-current refers to thermally generated electrons and is
therefore present even in the absence of light. This paper
presents a novel approach for denoising astronomical im-
ages that have been corrupted by dark-current noise. Our
method relies on a probabilistic description of the dark-
current of each pixel of a given camera. The noise model
is then combined with an image prior which is adapted to
astronomical images. In a laboratory environment, we use
a black and white CCD camera containing a cooling unit
and show that our method is superior to existing methods
in terms of root mean squared error. Furthermore, we show
that our method is practically relevant by providing visually
more appealing results on astronomical photographs taken
with a single lens reflex CMOS camera.

1. Introduction

The problem of removing noise from images has been
extensively studied. Methods to denoise images are nu-
merous and diverse. However, most work focuses on the
denoising of natural images or images of everyday scenes.
Denoising algorithms are usually evaluated on their ability
to remove additive white Gaussian noise with zero mean
and uniform variance across the image. Often it is assumed
that the variance of the noise is known.

The state-of-the-art image denoising methods try to
leverage properties that are inherent to natural images. E.g.
denoising with Fields of Experts [9] exploits the statistics of
natural images: the algorithm relies on a set of small filters
that have been trained on a dataset of natural images. An-
other successful denoising method, Bayesian least squares -
Gaussian scale mixtures (BLS-GSM) [8] applies a wavelet
transform on a noisy image and then exploits correlations
between neighboring coefficients that are observed on natu-

ral images. A further recent method, called BM3D [2] uses
the fact that in natural images, different patches are often
similar in appearance.

The problem of attenuating noise in astronomical im-
ages is quite different, however. Astronomical images have
statistics that are completely different from natural images.
Often, such images contain little structure, such as a few
stars against a black background. In addition, the charac-
teristics on the dark-current noise that corrupts these im-
ages differs from the uniform additive white Gaussian noise
most methods have been tuned to remove. We will show
that pixels of a sensor behave differently. Therefore, we
emphasize understanding and exploiting the statistics of the
noise, rather than the image.

Assumption: The statistics of sensor noise is not ade-
quately described by uniform additive white Gaussian noise
(AWGN), see e.g. [6].

Hypothesis: Exploiting the noise statistics of each individ-
ual pixel of a camera’s sensor leads to better denoising re-
sults.

Contribution: We present a novel method to remove noise
from astronomical images that have been corrupted by dark-
current noise. Our method relies on the combination of a
statistical description of the noise of each pixel of a cam-
era’s sensor and an image prior. We show that the results
achieved in that way are better than those obtained with
state-of-the-art denoising methods.

Related work: Besides the state-of-the-art works on im-
age denoising mentioned above, various authors have tried
to create an artificial dark frame to decrease dark current
noise. Such dark-frames are created in such a way as to
optimize some image quality measure once the dark-frame
has been subtracted from the noisy image. E.g., Goesele
et al. [4] have proposed to create an artificial dark-frame
by scaling a given dark-frame in such a way as to mini-
mize the entropy of the image. The method assumes that
dark-current increases with increasing temperature, but do
not take into account the random fluctuations for the dark-
current. Gomez-Rodriguez et al. [5] have proposed to create



a convex combination of previously recorded dark-frames
in such a way as to minimize the discrete gradient of the
image at certain locations.

2. Dark-current noise

There exist many sources of noise in the imaging pro-
cess. The different units of a CCD chip produce different
voltages for the same amount of input light, a phenomenon
sometimes called “fixed pattern noise” (FPN). This effect
is due to the fact that the wells in a CCD chip slightly
vary in size. An imaging sensor also produces “dark cur-
rent”’, which is due to thermal energy [12] and therefore
also present in the absence of light. The analog to digital
conversion process also introduces noise.

In the following we are not considering all possible
sources of noise, but focus our attention on the image sen-
sor’s dark current. The thermal energy of the imaging sen-
sor frees electrons, which then accumulate in the chip’s
wells. When an image is read out, the thermal electrons
are indistinguishable from photoelectrons. We therefore as-
sume the dark current to be additive and independent of
the image signal. This assumption has been successfully
exploited by others to denoise astronomical images [5].
Random samples of dark-current can be recorded with a
so-called “dark-frame”, which is a photograph taken with
closed lens and non-zero exposure time.

Since dark-current noise is due to thermal electrons, it is
possible to reduce the amount of dark-current by cooling the
camera’s sensor. For cameras on which cooling the image
sensor is not possible, a simple approach for denoising pho-
tographs is to subtract a dark-frame with matching camera
settings from the image. An improvement over this method
would be to subtract the average of many dark-frames [6],
thereby reducing the random components of the dark cur-
rent.

Dark-current depends on the exposure time of the image,
as well as the ISO-setting of the camera and the tempera-
ture of the image sensor [14]. More generally speaking, the
problem of removing dark-current noise can be seen as a
decomposition problem: Given a noisy observation y, what
is the most likely true image = and the most likely noise
sample d such that y = x + d, see Fig. 1. The problem is
solvable if we exploit knowledge about the statistics of the
image and about the distribution of the noise.

To study the statistics of dark current, we use a cam-
era with a CCD chip (pco.2000, image sensor KAI-4021,
cooled) that has a fixed conversion factor of 2.2 electrons
per pixel count. Each dark-frame contains 2048 x 2048
pixels. Each pixel value is encoded as a 16 bit value. The
camera has a built-in cooling unit, allowing us to study the
property of the noise at different temperature settings. We
record 200 dark-frames with 10 second exposure time at
chip temperatures 10°C, 5°C, 0°C, and —25°C.

observation

true image noise

Figure 1. The noisy image is modelled as a sum of the true image
and the dark current.

We randomly select 1000 pixels which we analyse in the
following. For each temperature setting we calculate the
mean and variances of these pixels. The top left panel of
Fig. 2 shows the sorted mean values of those 1000 pixels
over the 200 frames recorded at 20°C. Using this sorting of
the pixels we show in the top row panel the corresponding
mean values for the other temperatures and in the bottom
panel (again with the same ordering as the top left panel) the
variances. First of all we observe that the variances increase
with the mean pixel values. Also we see that for different
temperatures the same pixels exhibit a large mean and vari-
ance. Furthermore, we observe that for lower temperatures
the means and variances decrease.

3. Theory

For notational simplicity, the recorded image y, the dark
frame d, and the true image x are column vectors of the
same lengths. The entries are denoted by subscripts, i.e. y;,
d;, and z;.

Maximum likelihood estimator. Theoretically, the pixel
values of a dark frame d should be modelled with a Poisson
distribution, e.g. [10]. This would imply that for the correct
(ISO-dependent) scaling of the dark frames their pixel-wise
mean and variance should coincide. However, such a scal-
ing factor did not exist for our library of dark frames. For
that reason we model the pixel values of the dark frames
with Gaussian distributions for which we can adjust pixel-
wise the mean and variance independently. For simplicity
we consider in this part only dark frames of a fixed temper-
ature. For each pixel d; in a dark frame d, we can estimate
its mean vector . and variance vector o® from some large
set of dark frames that have been recorded with a fixed tem-
perature. Modelling the recorded noisy image as y = x +d,
the negative log likelihood of observing some image ¥ is:
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Figure 2. Mean (top) and variance (bottom) of 1000 randomly chosen pixels for decreasing temperatures (left to right).

where D is the diagonal matrix with the variances o2 along
its diagonal. The constant ¢ depends only on D but not on y
or z. Note that this likelihood models the amount of noise
individually for each pixel location. This is different from
most other methods, e.g. [3], who assume a global value
for the variance. Methods that allow different amounts of
noise in different locations of the image, usually estimate
that amount from the noisy image [7]. Instead, we deter-
mine the noise distribution from a library of dark frames.
The maximum likelihood estimate of x is equal to the
difference of y and , because setting z = y — . minimizes
—log p(y|x). We will denote this approach by DF-ML.

Maximum a posteriori estimator. The state of the art
denoising methods have successfully introduced priors for
natural images, e.g. [13]. Unfortunately, these priors do
not apply to astronomical images as we will see in the
experimental section. Instead we employ a generalization
of a simple image prior used by Gomez-Rodriguez et al.
[5] which is based on the idea that an astronomical image
should be smooth and not grainy, i.e. the prior assumes that
neighboring pixels should have similar values,

1
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where c is a constant independent of z, and NN; are the in-
dices of the eight neighbors of pixel 7. In case the camera
has a color filter array (CFA), the set of neighbors refers
to the closest pixels on the same color channel. Gomez-
Rodriguez et al. [5] applied this prior for p = 2. How-
ever, in our experiments it turned out that we get the best
results for p = 1.4. The factor A depends on the inverse
variance of the image prior, i.e. it controls to which degree
a pixel can be different from its neighbors. For the maxi-
mum a posteriori estimator, A is a hyper parameter which

controls the trade-off between the image prior and the like-
lihood. Throughout all reported experiments it was fixed to
A = 100. This value was determined on artificial training
images.

Together with the likelihood we can write down the pos-
terior distribution for x,

®)

where c is again a constant independent of x and y. To
determine the maximum a posteriori estimator, we have
to minimize the negative log-likelihood — log p(z|y) in x.
For this, we initialize x with its maximum likelihood esti-
mate and proceed with gradient descent steps minimizing
the negative log posterior — log p(z|y) in . We employ
an early stopping strategy to avoid over-smoothing. In the
following, we denote this method by DF-MAP,,.

—log p(z|y) = —log p(y|x) — log p(x) + c,

4. Experiments
4.1. Artificial stars with ground truth

To evaluate our method, we create artificial stars in a
dark sky by employing a black surface containing small
holes through which dim light shines. We obtain a low-
noise ground truth image by the following procedure: we
take 200 photos with a camera (pco.2000, image sensor
KAI-4021, cooled down to —25°C) and average the result-
ing images to reduce the noise. From the resulting im-
age, we subtract the average of 200 dark-frames recorded
with the same chip temperature and with the same exposure
times. The exposure time of all images is 10 seconds. Be-
sides the ground truth image, we take also 100 noisy test
images at 10°C chip temperature. The images are shot in
very low light conditions, resulting in noticeable noise, see
Fig. 3. Our goal is to recover the clean image as well as
possible, given a single noisy image.
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Figure 3. The results obtained by denoising using various methods. BM3D, which is particularly well suited for natural images, is not

suitable for denoising astronomical images and results in a black image.

To compare a reconstructed image with the ground truth
image, we calculate the root mean squared error (RMSE)
between the ground true image x* and the reconstructed
image z, defined as RMSE(z*, z) = /2 3" | (2} — )2,
where n is the number of pixels in the image.

As competitors to our method we apply state-of-the-
art methods for image denoising: BM3D [2], BLS-GSM
[8], Bilateral filtering [11], Fields of Experts (FoE) [9] and
dictionary-based denoising with an overcomplete DCT dic-
tionary (DCT) [3]. All those methods are initialized with
the maximum likelihood solution, i.e. with the difference
between the noisy frame and the mean dark-frame. We then
apply the various denoising algorithms. Usually, these de-
noising algorithms require a parameter describing the stan-
dard deviation of the noise present in the noisy image and it
is assumed that this standard deviation is the same for each
pixel in the image. We set this parameter value to be the
average of all o;s.

A method that is tailored for astronomical images is the
method proposed by Gomez-Rodriguez et al. [5], which
creates an artificial dark-frame as a convex combination
of available dark-frames. The method—called QP in the
following—attempts to minimize the same image penalty
function as we do (with p = 2) on a small selection of pixels
(so-called “evaluation points™), which leads to a tractable
quadratic programming problem. Following [5], we apply
their method using 1000 evaluation points. We use two dif-
ferent settings regarding the library of dark-frames: once
we use 160 dark-frames, all recorded with 10 second ex-

posure time but with temperatures ranging from —25°C to
10°C (20 frames per temperature, using 5°C increments).
In a second setting, we use 200 dark-frames recorded with
10 second exposure time and the temperature matching the
temperature with which the image was taken.

The method that only subtracts the mean dark-frame,
corresponding to the maximum likelihood estimate, is de-
noted by DF-ML. The results of our proposed maximum a
posteriori methods are denoted by DF-MAP,,.

denoising method mean RMSE
no denoising 416.3
BM3D [2] 103.7
BLS-GSM [8] 36.7
QP (all temperatures) [5] 35.2
DF-ML (mean dark frame) 32.1
QP (only one temperature) [5] 29.6
DF-MAP; (our method) 27.8
Matlab’s wiener2 27.5
Bilateral Filtering [11] 27.4
Fields of Experts [9] 27.2
DCT [3] 26.9
DF-MAP; 4 (our method) 20.0

Table 1. Average results obtained by denoising 100 noisy test im-
ages with different methods

The results in Tab. 1 show the state-of-the-art denois-
ing methods are not suitable for astronomical images. E.g.,



BM3D and BLS-GSM yield results that are worse than
those obtained by removing the mean dark-frame from the
noisy image. Since the mean dark-frame subtracted image
is provided as input, one can say that these methods dete-
riorate the results. Fig. 3 compares the results obtained by
denoising strategies we have tried. The result of BLS-GSM
contains artifacts that resemble the “ringing” phenomenon.
We presume that both BM3D and BLS-GSM make assump-
tions about images which are violated by the images we are
trying to denoise. Further evidence is that simpler denois-
ing methods, such as Matlab’s wiener?2 function and bilat-
eral filtering [11] work relatively well: these methods make
fewer assumptions about the statistics of images. Another
method that works well is the dictionary-based denoising
method with an overcomplete DCT Dictionary [3]. The
method assumes that patches in an image can be well rep-
resented using a sparse combination of predefined patches,
which appears to work well for astronomical images.

If we set the parameter p of our image prior to 2, we use
the same image penalty function as the method proposed by
Gomez-Rodriguez et al. [5]. Yet, our results are better. This
is presumably due to the fact that our model is more flexible
to repair individual pixels, whereas Gomez-Rodriguez et al.
are forced to subtract a convex combination of dark frames.

Modifying the image prior by setting p = 1.4, the re-
sults obtained with our method are even better (last line in
Tab. 1). It is not clear if the method proposed by Gomez-
Rodriguez et al. could be modified to use a different image
prior.

4.2. Real astronomical images

Orion constellation. To test our approach under real-
world conditions we applied it to a noisy image of part of
the constellation Orion. The image was taken by a Canon
EOS 5D with 60 seconds exposure time and ISO 1600 and
Canon lens 35/1.4 at aperture f/2.8. To minimize motion
blur due to celestial movements a tracking mount was used.
Demosaicing and gamma correction was performed using
dcraw [1].

In addition to the noisy astronomical image, we had
a library of dark-frames recorded with the same camera.
We had no control over the temperature of the image sen-
sor. The library of dark-frames was composed of 16 dark-
frames at exposure time 10 seconds, 32 at exposure time
60 seconds, 32 at exposure time 120 seconds as well as 16
bias-frames (dark-frames with the shortest possible expo-
sure time).

Fig. 4 shows the results of different denoising ap-
proaches for an enlarged cropped version (800 x 1000 pix-
els). The presented images were reconstructed by first de-
noising the raw images, then demosaicing with dcraw [1]
and finally gamma correction. Because BLS-GSM is not
meant to be applied to raw images, we apply it separately to

the four color channels. The approach proposed by Gomez-
Rodriguez et al. [5] and our method are also able to treat
raw images: the image prior is not calculated by consid-
ering a pixel’s immediate neighbors, but rather the closest
neighbors on the same color channel.

Subtracting the mean dark-frame, i.e. the maximum like-
lihood estimate, does not significantly improve the visual
quality of the image. In fact, artifacts are introduced: some
pixels seem to be too dark. A possible explanation for this
phenomenon would be if the camera’s sensor was warmer
at the time the image was recorded than at the time the dark-
frames were recorded. Dark-current increases with increas-
ing temperature, so the dark-current in the image would be
weaker than in the dark-frames.

Applying BLS-GSM to the dark-frame subtracted image
provides little improvement over the dark-frame subtracted
image. We found the results obtained by BLS-GSM to be
representative of results obtained with the other state-of-
the-art image denoising methods.

Using our method with p = 2 also did not create satis-
factory results. Visually, it is not clear whether using our
method with p = 2 provides better results than the mean
dark-frame subtracted result or using BLS-GSM.

We apply the approach proposed by Gomez-Rodriguez
et al. [5] using all dark-frames contained in our library. The
result obtained in this way is visually better than both the
original noisy image and the mean dark-frame subtracted
image. The dark pixels that are present in the mean dark-
frame subtracted image do not exist in the image denoised
by the method proposed by Gomez-Rodriguez ef al. It is
possible that the method was able to select dark-frames that
were recorded at a matching sensor temperature. However,
noise is still present in the image. The background looks
grainy.

For our method, we estimate the pixel means y and vari-
ances o2 using the dark-frames that have been recorded
with an exposure time of 60 seconds. Ideally, we would
have estimated 1 and o2 on dark-frames whose recording
temperature matches that of the noisy image. Nonetheless,
the result obtained by our method is smoother than any of
the previously applied methods. Our method was able to
strongly reduce the graininess that was visible in all pre-
vious results. Our method provides a very smooth back-
ground, yet does not cause even faint stars to disappear.
Also, the visual quality of the nebula is not deteriorated.

Milky way. Finally, we present results obtained on an im-
age of the Milky Way, recorded at an ISO setting of 3200,
with a Canon EOS 5D, see top panel of Fig. 5. For this im-
age we had only six dark-frames of matching settings avail-
able to us. We use these six dark-frames for the method pro-
posed by Gomez-Rodriguez ef al. as well as for our method.
On the left and right of the images we provide more detailed



views of parts of the image. The red inset contains four hot
pixels in the noisy image (the bright green pixels), which
were successfully removed by both the method proposed
by Gomez-Rodriguez et al. and ours. However, the result
obtained by our method appears much less grainy, which
makes individual stars more discernible.

5. Conclusions

We presented a new method for denoising astronomical
images containing dark current noise. The method relies on
a probabilistic description of a given camera’s dark-current,
as well as an image prior appropriate for astronomical im-
ages. Our method treats every pixel of a camera’s sensor
individually. Our image prior is similar to the one used
by Gomez-Rodriguez et al. [5] and attempts to capture the
roughness or graininess of an image. However, different
from [5] we are not limited to quadratic functions, which
allows us to use an image prior that is better suited for as-
tronomical images, and moreover, we are not restricted to
subtracting a convex combination of dark frames.

In laboratory conditions, we have shown that our method
provides better results than state-of-the-art denoising meth-
ods that are intended for use on natural images. Our method
also outperformed the recent method by Gomez-Rodriguez
et al., which is designed to denoise astronomical images.

On real astronomical images, we have shown that our
method provides visually more appealing results than other
methods. Images appear much less grainy after applying
our method than when applying other methods. Fine im-
age structure such as faint stars and nebula are preserved.
It should be added that our evaluation was on single im-
ages, which is the hardest case in the sense that their noise is
higher than for averages over several images as often used in
astrophotography. Moreover, some of the graininess that we
remove can also be removed by using a more sophisticated
image acquisition pipeline including dithering (combining
multiple exposures offset with respect to each other). We
would expect that this would further improve our results,
but make the difference to the other methods smaller.

Our method is limited in that we assume that appropri-
ate dark-frames are provided with the image to be denoised.
We assume the exposure time, ISO setting and temperature
of the camera’s sensor to approximately match the condi-
tions at which the noisy image was recorded. The method
proposed by Gomez-Rodriguez et al. overcomes this diffi-
culty: given a library of dark-frames recorded under varying
conditions, the optimization problem selects dark-frames
that were recorded under the same conditions as the im-
age. It is therefore conceivable to combine the two methods:
the quadratic optimization problem described by Gomez-
Rodriguez et al. could be used to select a set of dark-
frames from a larger library. Our method would then use
the selected dark-frames to infer an appropriate probabilis-

tic dark-current model for the denoising process.
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Figure 4. Comparison of various denoising techniques on a small section of the image of the constellation Orion.




Recorded noisy image
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Figure 5. Comparison of QP [5] and DF-MAP; 4 (our method) on a real astronomical image (taken with a Canon EOS 5D at ISO 3200 and
60 sec. exposure time with Zeiss Distagon 28mm lens at {/2.8, courtesy of Gomez-Rodriguez, Kober, and Scholkopf [5]).




